Multi-view metric learning for multi-instance image classification
نویسندگان
چکیده
It is critical and meaningful to make image classification since it can help human in image retrieval and recognition, object detection, etc. In this paper, three-sides efforts are made to accomplish the task. First, visual features with bag-of-words representation, not single vector, are extracted to characterize the image. To improve the performance, the idea of multi-view learning is implemented and three kinds of features are provided, each one corresponds to a single view. The information from three views is complementary to each other, which can be unified together. Then a new distance function is designed for bags by computing the weighted sum of the distances between instances. The technique of metric learning is explored to construct a data-dependent distance metric to measure the relationships between instances, meanwhile between bags and images, more accurately. Last, a novel approach, called MVML, is proposed, which optimizes the joint probability that every image is similar with its nearest image. MVML learns multiple distance metrics, each one models a single view, to unifies the information from multiple views. The method can be solved by alternate optimization iteratively. Gradient ascent and positive semi-definite projection are utilized in the iterations. Distance comparisons verified that the new bag distance function is prior to previous functions. In model evaluation, numerical experiments show that MVML with multiple views performs better than single view condition, which demonstrates that our model can assemble the complementary information efficiently and measure the distance between images more precisely. Experiments on influence of parameters and instance number validate the consistency of the method.
منابع مشابه
Experiments with Multi-view Multi-instance Learning for Supervised Image Classification
In this paper we empirically investigate the benefits of multi-view multi-instance (MVMI) learning for supervised image classification. In multi-instance learning, examples for learning contain bags of feature vectors and thus data from different views cannot simply be concatenated as in the singleinstance case. Hence, multi-view learning, where one classifier is built per view, is particularly...
متن کاملA Literature Survey on Algorithms for Multi-label Learning
Multi-label Learning is a form of supervised learning where the classification algorithm is required to learn from a set of instances, each instance can belong to multiple classes and so after be able to predict a set of class labels for a new instance. This is a generalized version of most popular multi-class problems where each instances is restricted to have only one class label. There exist...
متن کاملOn Combining Side Information and Unlabeled Data for Heterogeneous Multi-Task Metric Learning
Distance metric learning (DML) is critical for a wide variety of machine learning algorithms and pattern recognition applications. Transfer metric learning (TML) leverages the side information (e.g., similar/dissimilar constraints over pairs of samples) from related domains to help the target metric learning (with limited information). Current TML tools usually assume that different domains exp...
متن کاملMulti-Instance Multi-Label Learning with Application to Scene Classification
In this paper, we formalize multi-instance multi-label learning, where each training example is associated with not only multiple instances but also multiple class labels. Such a problem can occur in many real-world tasks, e.g. an image usually contains multiple patches each of which can be described by a feature vector, and the image can belong to multiple categories since its semantics can be...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.06671 شماره
صفحات -
تاریخ انتشار 2016